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A theory is presented for the development of the nonlinear critical layer below an 
unsteady free surface wave, of amplitude E, described by the Korteweg-de Vries 
(KdV) equation. The problem is formulated (via the Euler equations) for wave 
propagation over an arbitrary shear in a two-dimensional channel which contains a 
critical level. The equations are scaled so as to be valid in the far-field regime of the 
surface wave, appropriate to the existence of the KdV equation, i.e. long waves. The 
regions above and below the critical layer are solved (to O(E) ,  as € 4 0 )  and thence 
expanded in the neighbourhood of the critical layer itself. The symmetry of the 
critical layer solution, assuming that it exists, is then sufficient to determine the Burns 
integral for the linearized wave speed, and the relevant KdV equation. These turn 
out to be the classical results evaluated in terms of finite parts. 

The critical layer, of thickness O(&, is analysed to O(E)  and matched to the outer 
regions of the flow field. The initial configuration is taken to contain no closed 
streamlines, and so the vorticity can, presumably, be assigned from the undisturbed 
conditions at infinity. The initial surface profile must therefore contain a single peak, 
but by virtue of the KdV equation this can evolve into any number of solitons. 
Between consecutive pairs of peaks there will now appear regions of closed streamlines 
(cat’s-eyes) with known vorticity. No recourse to a viscous argument is necessary to 
uniquely determine this vorticity. However, it is shown that the vorticity cannot be 
prescribed arbitrarily at all orders, initially : the long-wave assumption imposes a 
certain structure on the problem, and then the continuity of stream function and 
particle velocity fixes the vorticity. This agrees with the work of Varley & Blyth 
(1983) on the hydraulic equations. The vorticity inside the separating streamlines is 
obtained to O(E),  but it is shown that for unsteady motion this asymptotic expansion 
is not uniformly valid as the bounding streamlines are approached. An alternative 
method, which exploits Varley & Blythe’s approach, is used to confirm the correctness 
of our results away from these boundaries, and to indicate that a non-uniformity is 
present near the separating streamlines. Thus the model requires the inclusion of a 
vortex sheet; for steady flow a jump in vorticity is sufficient. The removal of the 
discontinuity by allowing a distortion of the main flow outside the critical layer is 
briefly discussed. 

Some results are presented for the formation of a single cat’s-eye by using the exact 
%soliton solution of the KdV equation. 

1. Introduction 
The occurrence of a critical layer below a surface wave which moves over a shear 

flow (and in many other flow configurations) is a well-understood phenomenon. This 
layer is a region in the neighbourhood of the point (or rather, line) at which the wave 
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speed is equal to the speed in the shear flow. The conditions that must pertain for the 
existence of a critical layer, and the methods for accommodating the non-uniformity 
there, are problems which have proved a nenable to the analytical treatment. In  
particular, we can use either nonlinearity of viscous stresses - or both - within 
the layer to provide a well-defined structure. The size (i.e. thickness) of the layer 
is governed by the physical parameters, and the choice between a predomi- 
nantly viscous or predominantly nonlinear critical layer will depend on the relative 
magnitudes of these parameters. For example, if the wave amplitude parameter (E), 

although small, is greatly in excess of the inverse Reynolds number (R-l) then the 
layer will be dominated by the nonlinear contribution (see Benney & Bergeron 1969; 
Davis 1969; Haberman 1972). The limiting procedure is therefore to let R+ co $first, 
whilst retaining the critical layer with a thickness O(&, as e+ O+ ; a viscous-dominated 
layer has a thickness O(R-4) (see, for example, Reid 1965). Of course, if a nonlinear 
critical layer theory implies any discontinuities in vorticity then it might be argued 
that thin viscous regions must be incorporated to smooth out the solution. In fact 
the authors Benney & Bergeron and Davis used this important refinement as the only 
means available for determining the vorticity in the region(s) of closed streamlines 
(the flow being steady). Another approach was adopted by Haberman (1972) which 
involves allowing a distortion to the main stream outside the critical layer ; we shall 
mention this possibility later. 

It is well known that, for steady, inviscid flows with closed streamlines, there is 
no way of uniquely determining the constant vorticity there (the Prandtl-Batchelor 
theorem). Such steady flows then require the adoption of a more complete theory for 
the viscous fluid, as first expounded by Batchelor (1956). Here we shall be concerned 
with the strictly inviscid theory, and examine with some care how far this will take 
us in obtaining a complete solution of the Euler equations (albeit at the expense of 
allowing discontinuities in vorticity). In  order to uniquely determine the vorticity 
we shall develop a theory for unsteady motion, and so introduce the initial vorticity 
distribution. In  particular, we could start with a flow for which the streamlines are 
not closed initially, and then allow closed regions to appear as the surface wave 
propagates. (We shall see, however, that we cannot allow the vorticity to be 
arbitrarily assigned a priori.) Naturally, any application of the results obtained from 
this type of analysis to a real (viscous) fluid must be on the understanding that the 
timescales involved are far less than those associated with any significant contribution 
from the viscous effects. 

A particular class of inviscid problems, one of which describes the time development 
of a long eddy, has been discussed by Varley & Blythe (1983). These authors make 
use of model equations which are in some sense valid for long waves. These equations, 
the so-called ‘hydraulic equations ’, represent the pressure solely by the local 
hydrostatic pressure distribution at each point below the surface. This problem then 
admits of exact solutions, and a careful treatment is given of the various types of 
streamline that arise in the presence of a critical layer. They show that even for steady 
flows the appropriate continuity conditions alone enable the vorticity to be uniquely 
determined for ‘long’ regions. In a sense, the present work can be regarded as an 
extension of this unsteady long-wave aspect of their analysis, although our presen- 
tation can only be asymptotic (as E + O ) .  We shall use the complete Euler equations, 
the flow is to be unsteady, the surface wave dispersive, and the vorticity is specified 
to be consistent with the initial flow configuration. As found by Varley & Blythe 
(1983), this approach is particularly straightforward for long waves. 

The choice of an unsteady flow which will admit the formation of at least one region 
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of closed streamlines is, perhaps, not immediately obvious. However, this turns out 
to be quite simple if we take advantage of the exact n-soliton solution of the 
Korteweg-de Vries (or KdV) equation. To this end, we shall construct a critical-layer 
theory in the far-field long-wave regime defined by times O ( d )  and characteristic 
variable O ( d ) ,  as €-to. This is the asymptotic limit which contains the KdV equation 
as the leading-order description of the surface wave. The surface wave will therefore 
be nonlinear, dispersive and above all unsteady (although steady solutions of the KdV 
equation do, of course, exist; the extension of Benney-Bergeron/Davis theory to 
steady, periodic, hite-amplitude waves is discussed by Moore & Saffman 1982, and 
for steady stratified flows over small obstacles by Margolis & Su 1978.) The 
formulation of the KdV equation for surface waves over arbitrary shears in the 
absence of a critical layer is given by Freeman & Johnson (1970), and for the solitary 
wave alone by Benjamin (1 962). 

The development of a theory which couples the nonlinear critical layer and the KdV 
equation is not new. Redekopp (1977) has shown that the KdV equation, or modified 
KdV equation, can arise in the study of solitary Rossby waves; the author also 
invokes the usual viscous secularity condition in order to produce a unique vorticity 
distribution. The techniques were extended by Maslowe & Redekopp (1980) to long 
waves in stratified flows, again resulting in the KdV equation. However, the 
possibility of a long-wave structure imposing a certain vorticity distribution (as found 
by Varley & Blythe 1983) does not seem to play any role in these results. In  fact Brown 
& Stewartson (1979) have suggested that some doubt exists as to the validity of the 
scenario described by Redekopp (1977) : on sufficiently long times the soliton solution 
may not survive. Of course, the same criticism can be levelled at our work. We must 
assume that the viscous critical layer is much thinner than the nonlinear one; that 
the viscous diffusion of vorticity is on a timescale much greater than that for the wave 
evolution; that the mean shear diffusion is also on a long timescale; that the wall 
layer remains thin and therefore does not extend out to the critical layer. All these 
assumptions are legitimate if R-l 4 d (see Redekopp 1977; Brown & Stewartson 
1979; Maslowe & Redekopp 1980), but on timescales in excess of O ( d )  the whole 
structure of the solution which we shall present may altogether disappear. It should 
also be noted that the use of a no-slip condition at the wall might well have a 
significant effect (see Haberman 1972). 

A region of closed streamlines can be established with just a little care. For 
example, suppose that initially we have a wave profile which decays at infinity and 
contains a single peak. According to the (exact) 2-soliton solution of the KdV 
equation this profile will evolve into two solitons, the larger to the right of the smaller 
one and both propagating to the right. As soon as two maxima have appeared the 
critical layer between the two peaks will contain closed streamlines ; initially these 
same streamlines are composed of two sets of open lines, to the left and to the right 
of the point below the maximum amplitude, bounded by the ‘separating’ streamlines. 
However, the closed streamline region now formed is not quite the classical picture, 
since its bounding streamline extends from - 00, and returns there. (The Kelvin 
cats’-eyes pattern (Kelvin 1880) is usually represented a,s a periodic patern of closed 
regions bounded by separating streamlines which extend from -00 to +00.)  

Nevertheless, it  is still possible to produce a ‘classical’ cat’s-eye, although in a 
technically less satisfactory manner. To see this, consider now an initial profile with 
two unequal peaks, the larger far to the left of the smaller. Although a region of closed 
streamlines exists initially, these lines asymptote to a set of parallel lines as the 
distance between the solitons increases. In consequence we may reasonably designate 
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the vorticity as that associated with the undisturbed shear flow. As the larger soliton 
approaches the smaller (both propagating to the right), a symmetric profile is 
produced at one instant in time. If the amplitudes of the two initial solitons are chosen 
to lie in a certain range then the symmetric profile has twin peaks. Since the maxima 
are equal the region of closed streamlines is bounded by streamlines which extend 
from - co to + co. It is fairly easy to see that certain 3-soliton solutions of the KdV 
equation can allow three equal maxima (and therefore two cats’-eyes) at  one instant. 
More generally, any number of maxima - and therefore any number of cats’-eyes - can 
be generated from a suitable initial profile with a single maximum, but these maxima 
are all unequal. The initial single-peaked profile which then evolves into a profile with 
two or more peaks, coupled with the restriction to long waves, constitute the novel 
features here. This will enable us to describe the formation of closed-streamline 
regions with known vorticity without recourse to any argument based on a viscous 
fluid. Since the open-streamline pattern will actually persist for some time, before 
generating the closed-streamline pattern, the problems encountered by Stewartson 
(1978) (when a sinusoidal Rossby wave was forced on a shear layer at t = 0) would 
not seem to be relevant here. 

To summarize, we shall present a theory of the nonlinear critical layer which is 
applicable to the far field of the surface wave. This far-field region is the one which 
contains the KdV equation as the leading approximation to the description of the 
surface wave (s+O). The asymptotic expansions valid in the layers above and below 
the critical layer are themselves expanded to provide the appropriate matching 
conditions for the solution of the critical-layer problem. It turns out that merely 
supposing the existence of a critical-layer solution is sufficient to enable both the 
linearized wave speed and the KdV equation to be completely determined. (This makes 
use of a symmetry of the critical layer.) The details of the asymptotic expansion valid 
within the critical layer will be developed to O(s). This will enable us to discuss in some 
detail how the time evolution of the flow manifests itself, particularly in the formation 
of cats’-eyes, and also the form taken by the vorticity (which itself varies on the long 
timescale). Our aim is to provide as complete a theory as the Euler equations will 
allow : we shall admit discontinuities in vorticity, arguing that a thin viscous layer 
could presumably be introduced to provide a continuous structure across the 
separating streamline. However, we shall also briefly indicate how the removal of any 
discontinuity in vorticity is possible, without invoking the action of viscosity, by a 
suitable distortion of the main stream (see Haberman 1972 ; also Brown & Stewartson 
1978). It is beyond the scope of this present study to attempt a definitive answer as 
to whether our solution of the Euler equations is, in fact, a limit solution of the 
Navier-Stokes equations as R + 00. 

2. Formulation 
The flow under consideration is two-dimensional, bounded by a rigid horizontal 

surface below and a free surface (at constant pressure) above; the acceleration of 
gravity is constant. The governing equations for the inviscid, incompressible fluid are 
therefore 

V p + F ,  V * U = O ;  F G  (0, -g); 
Du 1 
Dt D 
- = -- 

Dh 
w = - on z = h(x, t )  ; Dt p = const, 

w = O  onz=O,  
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FIGURE 1. The non-dimensional variables. 

written in the usual notation with x = ( 2 , ~ )  and u E (u, w) .  This system is non- 
dimensionalized by making use of the undisturbed depth of the fluid (ho)7 a typical 
wavelength of the motion ( A ) ,  a typical wave amplitude (a) and a measure (the 
maximum value, say) of the shear profile beneath the surface. Such a scheme will 
generate two parameters: E = a/h,, the amplitude parameter, and S = h,/A, the 
long-wave parameter. The non-dimensional variables are now scaled according to 

€4 
g = [J (2-Ct), 7 = [<) t ,  ) 

(1)  I \ U /  \ v /  

with u+ u(z)+cuu, w+Ew, p+ph(z)+Ep, 

h = 1+E?#l ,  

where Ph(z) is the hydrostatic pressure distribution for h = 1. The limit process is then 
E + O + ,  for arbitrary 6 (and so 6 and T are essentially defined using the scale-length 
h,, rather than the original A). We can note that the special case s2 = O(E)  (often 
quoted in the derivation of the KdV equation) leaves = 0(1) and t = O(s-'). The 
transformations given in (1) require the (non-dimensional) shear profile, U(z) ,  to be 
specified; c is the speed of propagation of linear waves on the surface and is to be 
determined. For reference the non-dimensional scaled variables are used in figure 1 
and the corresponding equations can be written as 

(U-c)ug+ U'W+E(U,+UUE+WUz)+pE = 0, 

pz+"(U-c)Wg+E~(W,+UW5+WWZ) = 0, 

us+ w, = 0; 

with w = O  o n z = O  

and p = 7, w = (U-cc)?#lE+~(y,+uy5) on z = 1 + q .  

The subscripts denote partial derivatives and U' = dU/dz. 
The asymptotic solution (as s+O) of (2) requires that each term in the expansions 

for u, w and p is defined for 0 < z < 1. A critical layer then arises if U(z)-c  = 0 for 
some z E (0 , l )  : we do not include the degenerate problem for which V(z )  - c = 0 at 
z = 0 or 1. The existence of  a critical layer means that, for example, the expansion 
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for the stream function is not defined (at all orders) as z+zc, where U(z,) = c. If, 
however, there is ru) critical layer, then a straightforward expansion solution 

u - uo+eul, r - r o + q l ,  p - po+epl ,  as s+O, 

yields the KdV equation for vo(f;, 7 )  : 

where 

and 

(see Freeman & Johnson 1970). The linearized propagation speed c is determined 
by the integral constraint (Burns 1953) 

P1 
I ,  = J [F(z)]-' dz = 1 .  

0 
(4) 

In  the present work we shall examine the solution of (2) when a critical layer is 
present, and for an initial surface profile which contains a single maximum value 
(although other choices are possible, as we mentioned earlier). The critical layer is 
assumed to exist, and to be at z = z, (0 < z, < l ) ,  such that 

F(z,) = U(2,)-c = 0, 1p'(z,) * 0. 

Evaluation at  the critical level will be denoted by the subscript c, e.g. F, = 0, Fh * 0. 
The equations ( 2 )  will, however, only describe the flow regime away from the critical 
layer (that is, above and below the layer), as e+O+. The region containing the critical 
layer is represented by a suitably scaled version of (2). This scaling is well known 
and easily derived. Consider the total stream function $T, for the flow, which can 
be written as 

l,bT - J' [ U ( Z ) - C ] ~ Z + ~ $ ~  as e+O+, 
zc 

where $o denotes the first approximation to the stream function as defined by 
equations (2). Now as z+zc this yields 

$T - ~ ( z - z c ) 2 F ~ + e $ 0 ,  

and, if k0 remains bounded (and non-zero) as this limit is taken, then the asymptotic 
expansion is certainly non-uniform when 2-2, = O(ef ) .  (The behaviour of $o will be 
described later.) Thus we define new variables 

2-2, = Az, u = s - f V ,  w = w, p = P ,  (5)  

to describe the nonlinear critical layer (see Benny & Bergeron 1969). The critical layer 
(or inner) region is therefore an appropriate solution of the set 

( 0 - c )  V,+d(0 'W+ VV,+ WVZ+P,)+€VT = 0,) 

I P,+d(O-c) W5+€2(VW,+ WWZ)+dWT = 0, 

V<+ w, = 0, I 
where 0 = U(z,+s&), with €-to+. We note that the original boundary conditions 
applicable to (2) are to be replaced here by conditions that allow matching to the 
outer regions. 
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Outer 0 

Outer @ 

\-------- 

The procedure we adopt is first to solve (2), as e+O+, in the regions above and below 
the critical layer; these outer regions will be denoted by superscripts + and - 
respectively. Of course, such solutions cannot be uniquely determined since they are, 
as yet, unconnected across the critical layer. However, these solutions can be 
expanded as z + z, to yield the form that must be taken by the asymptotic expansion 
valid in the critical layer, and also to provide the matching conditions to be appended 
to (6). The critical-layer problem can now be analysed but, since we will allow a 
discontinuity in vorticity across a separating streamline, each term in the expansion 
takes (in general) one of two forms. This solution will, nevertheless, satisfy the 
conditions of continuity of both the stream function and the particle velocity across 
the separating streamline. The complete problem - both inner and outer - comprises 
five regions, which are depicted in figure 2, although the two regions inside the critical 
layer but outside the separating streamlines are identical by symmetry. Consequently 
the number of regions to be analysed is reduced to four, and of those the outer f 
are rather similar. We shall comment, however, that the appropriate KdV equation 
and Burns condition can be derived without solving the critical-layer problem at all, 
provided only that the symmetric solutions do exist. 

3. The outer regions 
First we turn our attention to the solution of (2), in the regions above (1 3 z > zc )  

and below (0 < z < zc) the critical layer. It is convenient to introduce the stream 
function $(& T ,  z ;  e )  and then seek an asymptotic solution 

$* $@! p* p@! +ep; ; 7 %+e%, (7 1 
valid as €-to+. The existence of an inner expansion, and its matching, as presented 
here does not necessitate terms in addition to the sequence {en},  with the possible 
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exceptions of: (i) contributions to the arbitrary ‘constant’ (which may be a function 
of T), and (ii) inclusion of an O ( d )  distortion of the main flow (see $ 5 ) .  Rather, the 
expansion of (7) as z .+ zc completely determines the form of the inner expansion. The 
leading-order problem obtained by using (7) in ( 2 )  is described by 

I F $ & z - w o i , + P &  = 0; p& = 0; 

with P: = t o ,  $& = -F,tO[ on z = 1 ,  

and 

Here, F = F ( z )  and Fl = F ( 1 ) ;  the solution of this set yields 

$% = 0 (or $, = 0, say) on z = 0. 

P,+ = %(E,  4 ; PO = I q E ,  7 )  ; 

where Ho is an arbitrary function and C$(T)  play the role of arbitrary ‘constants’. 
Clearly, we could choose C; = 0, for example, so that z = 0 is the streamline $; = 0 
(as mentioned in (8)). However, it is slightly neater to assign the constant associated 
with the critical-layer solution (as zero, say) and then evaluate Cg accordingly. To 
express the above solution in a compact form, it is convenient to write to as qO+ and 
then set H, = 7; (but still arbitrary, of course). If we then use the definitions 

I+ = 1 -Jzl F-2 dz, I-  = 

the solution (9) becomes 

The problem defining the O(e) terms is now given by 

We have adopted the same notation as employed in (8), and the surface boundary 
conditions have been expanded about z = 1 .  If we write ql = r]: , and let 9; ( E ,  7 )  be 
an arbitrary function, then the compact form of the solution is 

where 

. .  
F 

al- = 0, a: = - [ ?&dE+!j(~0+)~ (Fi+2F;’)] ,  
Fl 
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dz = J': dz, J- dz = s,' dz; 
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the Clf (7)  are the arbitrary 'constants '. It has been assumed in (13) that the surface 
wave, and also q;;, decay as c++ 00, i.e. there is no disturbance ahead of the wave. 
Of course, it  is clear that we can expect particularly simple relations between qn = 7; 
and q;;, even when a critical layer is present. 

The importance of quoting the solutions (11) and (13) is not so much in the form 
they take - although that may be of some interest - but rather in the expansions they 
generate as z+z,. If we set z = z,+dZ, and then expand for s+O+, we shall obtain 
the €-dependence of the terms that must be present in the expansion of the inner 
(critical layer) region, as well as the required matching conditions. However, before 
we turn to this detailed aspect of the limiting behaviour we can note that $$ -+ T~$/FL 
as z+zc, which confirms the nature of the breakdown of the outer expansion. 
Furthermore, +lf is unbounded as z+z,, emphasizing still more strongly the need 
for the critical layer. 

The expansion of p$ + splf and $$ + s$lf, as z -+ z, is quite involved, particularly 
for the stream function. The complete expansion for $$ + s$:, up to and including 
O(A), is given in the Appendix. We shall present here a somewhat reduced and 
simplified version which retains the salient features. The corresponding expansion for 
the pressure is quite straightforward, yielding 

P$ + EP? = 7; + ~(7; k K*q&) + o(A), (14) 

for z = z,+dZ, as s+O+ (and the Kf are given below): the pressure perturbation, 
to this order, does not vary with 2. For the stream function we obtain 

+ (K'Izf -L*)  T& (7;)' + O(d), (15) 11 
where the yc = yr(Z, 6 , ~ )  (for i = 1, . . . ,8) can be deduced by comparing (15) with the 
full details in the Appendix. Only terms that differ above and below are recorded in 
(15), and then only the first time they occur. (For example, terms in both q$ and 
k*q$ appear through the yr . )  The notation adopted in (14) and (15) involves defining 
various integrals : 

K+ = Jz: P I + d z ,  K- = J: P I -  dz, L+ = P I + (  1 -I+) dz, L- = J: P ( I - ) 2  dz, 

(16) 

and P ,  I:, I;; are the finite parts (as z+ z,) of I*,  S,'F-" dz, Soz FPn dz, respectively. 
Thus we can write, for example, 

€ - = I ;  and P =  l - I i ,  
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and we note that all the finite parts are defined in the conventional way, e.g. 

as z+z,f. The integrals K* , L* are clearly finite even though they involve I * .  
The expansion of the stream function given in (15) is a generalization of the 

corresponding results obtained by other authors, in particular Benney & Bergeron 
(1969) and Davis (1969). The form of (15) derived here is valid for an unsteady, and 
as yet unknown, nonlinear surface profile. This expansion, however, agrees with the 
general pattern described by Benney & Maslowe (1975). We can now use the limited 
information given in (15), together with an observation developed in the next 
paragraph, to determine the equation which describes the surface profile function, 
7(&7) ,  to leading order. If we assume that the critical-layer solutions exist and are 
symmetric about 2 = 0 (see $4), then the expansions of @+ and @-, as z-tz,, must 
be identical since these expansions constitute matching conditions for the critical-layer 
solution. This constraint applied to the expansion (15), and more generally to the 
expansion given in the Appendix, yields the following identities: 

7o = 7: = 7;; k+ = k or I:+I;  = 1; 

7; + K+7& = 7; - K - ~ y f ;  I 
= -2I;JEW T,J& d[+ ( K - I ~ - - - ) ~ ~ 5 - ~ ~ ~ ( ~ ~ ) 2 - I - ~ ; .  

That there can be no other contributions to the terms given in (15), and used in 
(17), from the expansion of higher-order terms (en@;, n 2 2 )  is easily seen. The first 
and third equations that appear in (17) arise from the terms O(1),  O(e) ,  respectively; 
the second and fourth equations are generated by terms O ( d Z ) ,  O(dZ) respectively. 
However, later terms in the expansion will produce, for example, terms of the form 
O(en) and O(&Z), n 2 2 : the identities presented in (17) are therefore complete and 
require no further amendment from terms unknown. 

From (17) it is clear that the Burns integral condition for the linearized propagation 
speed c is replaced by 

which is just the finite part of the original condition (see Velthuizen & van 
Wijngaarden 1969). Also we see that the relation between 7; and 7; is precisely that 
required to make the pressure continuous across z = z,, on the basis of the outer 
solution alone, to this order: see (14). The equation defining T ~ ( ( , T )  (= 72)  is now 
obtained from the fourth equation in (17),  after incorporating the previous three 
identities, as 

(19) 

where a differentiation with respect to 6 has also been performed. The coefficient 
K++L--L+ turns out to be just the finite part of the integral J (see (3)). In  other 
words, (19) is the KdV equation for waves over an arbitrary shear, but evaluated 
in terms of finite parts (cf. Redekopp 1977 ; Maslowe & Redekopp 1980). 

Although the KdV equation, (19), admits an exact nonlinear periodic wave solution 
(the cnoidal wave), strictly speaking such a choice of solution cannot be adopted here 

I i + I ;  = 1, (18) 

- 2 (I: + 1;) 7oT + 3(1$ + 1;) 7 0  706  + (K+ + L- - L+) ~ O g f  = 0, 
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since we have already incorporated the assumption that qo + 0 as (+ 00. Our concern 
is with unsteady solutions which may evolve into a solution with a number of maxima 
at one instant in time. For such solutions we require that q o + O  as f[++oo (or 
e+- co); in fact, the n-soliton solution satisfies qo+O as 151+00, (for all 7 < oo), as 
do all solutions with initial data on compact support. We are now in a position to 
investigate the consequences for the critical-layer region, as the surface wave evolves 
according to the KdV equation (19). 

4. The critical layer region 
The equations to be used in the description of the critical layer are given in (6), 

and the expansion (15) (see also the Appendix) provides the appropriate matching 
conditions as Z +& 00. If we introduce the stream function Y(E,7,Z; E) then the 
pressure, P, and Y,  are to be expanded as 

both valid as E+O+.  Although more information is available concerning the form of 
these inner expansions (see (14) and (15)) we shall examine in detail only terms as 
far as O(8). The asymptotic solution prescribed in (20) is to be determined by imposing 
the continuity of (a) pressure, (b) stream function and (c) particle velocity, at every 
point within the critical layer. Specifically, these conditions will apply on the 
separating streamline, although presumably we must allow a discontinuity in 
vorticity across this line. The separating streamline will, at the initial time, isolate 
streamlines which are defined for - 00 < E < a0 with dZ/dE finite everywhere from 
those which turn around and return whence they have come (and therefore these have 
dZ/dt infinite at one point). At later times the separating streamlines may confine 
regions with closed streamlines. 

The leading-order problem obtained from (6) and (20) produces a slight generali- 
zation of the classical stream function usually associated with the Kelvin cats'-eyes 
pattern. We have that 

and so Po = qo( = 7:) = q; if the pressure is to be continuous and to match to (14) ; 
also see (17). The equation for Yo can be expressed as 

!&,, = f( 5) where !& = !jZ2F; + !&, 
and f( . ) is an arbitrary function. Now at 7 = 0, and in fact until a second peak is 
formed, all the streamlines extend to infinity: no closed streamlines exist. At infinity 
we prescribe the undisturbed shear profile, i.e. %,,+FL as IEl+ 00 (since q o + O  as 
161 + a), and the matching condition requires that Yo+ qo/FL as 121 + 00, whence 

setting Yo = 0 for qo = 0. The dominant representation for the streamlines is 
therefore 

(23) $P+g = go, g = a F2 2 0, 
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where 5, is a constant. If 5 is determined from the initial wave profile which has a 
single maximum, 5 = c,, then 5, = Crn will describe the separating streamlines. The 
streamlines interior are given by 5, > 5, > 0; those exterior are given by 5, > 5,. 
Of course, the perturbation stream function, and the_ total stream function, are 
defined for all 2, as are all the derivatives of Yo (and Yo): see (22). In consequence 
the vorticity is continuous throughout the critical-layer region, to leading order. Any 
particular streamline, for which f is fixed by choosing an appropriate 2 ( = _+ (25,);) 
as E++ co, will now evolve (as 7 varies) according to (23) (with { = so([, q)/F?,  where 
7, satisfies the KdV equation, (19)). On the other hand, the separating streamline 
itself will also evolve as 7 varies, since the maximum value of 5 (from the maximum 
of 7,) is a function of 7, 

$2' + 5 = Cm(7) ( 2 0). (24 ) 

However, it  must be remembered that (24) describes different streamlines at  different 
times (cf. (23)) : this streamline at any instant passes through the points 2 = f (25,)f, 
E++co. Nevertheless it is the separating streamlines given by (24) that we shall 
require when the continuity conditions at higher order, and for all 7 ,  are imposed. 

The equation for Y1(& T ,  2) is 

which has the general solution 

!P, = ~ z w , ( ~ Z 2 + ~ , ~ ) d Z d . Z + a 1 2 + ~ l ,  

where o1 is the (arbitrary) vorticity contribution, and a,(& 7), pl(E, 7 )  are arbitrary 
functions (associated with the limits on the double integral). These three unknown 
functions will (in the most general problem) differ above, below and inside the 
separating streamlines. Now the total vorticity outside the separating streamlines is 
- F ; + O ( d )  as E++m and so o l + O  as E++co, for all 2. Hence w1 EE 0, and then 
to match as 121 --f 00 we must set a, = +FE 5;  we choose p1 = 0. The continuity of Y1 
and Kz across 2 = f (2(crn-5)); then requires that 

Y1 = +FECZ, (26) 

everywhere : the vorticity inside is therefore uniquely determined. (The choice of zero 
constants in both (22) and (26) means that the matching back to the expansion for 
$$ +E$; yields (2; = 0.) The total stream function now takes the form 

to this order; the streamlines are given by setting expression (27) equal to c,, and 
the separating streamlines are obtained (to this same order) by using cm (the 
maximum value as defined earlier). 

The next three terms in the critical-layer expansion are obtained by using similar 
arguments, although the matching requirements together with the continuity 
conditions now imply that Y, and Y4 contribute a discontinuity in vorticity across 
the separating streamlines. If 2 = Z,(& 7; 8 )  is the separating streamline, then Y and 
Yz are to be continuous on Z = 2, if the stream function and particle velocity are 
to be continuous on this line. Noting that 2, - f 2, as €-to+, where 2, = (2(Cm-5))4 
the continuity conditions are expanded about 2 = f 2, to yield Yn, Ynz (n = 0, . . . ,3 ) ,  
Y4 and ( Y4z -+(FZ/Fh) ~ Y 2 z z )  continuous across2 = f 2,. The details in the derivation 
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of the solutions for Y2, Y3 and Y4 will be omitted; the methods will, however, be 
explained with reference to the solution for Y,. We obtain, after a little analysis, 

y2 = - -23~;+a , z+  { f F d : z o  KZo (Z2 + 2cfl dZ) dZ, 121 2 2, 

0, 121 < 2,; 
% = - - P  (VZ); 

(28) 

(29) 
1 FZ2 
8 FL 

where a2 = F;[ln((2[m):+Zo)+ 1-ln2]y++F~2,(2~m):-F~I,f go. (31) 

(The signs are ordered : ' + ' in Z > 2, and ' - ' in Z < - Z,, and 1; = 1; since a2 must 
be continuous in -2, < 2 < 2,; see (17).) The integrals appearing in (28) and (30) 
can be evaluated in terms of elementary functions (which greatly aids the matching), 
but i t  is much neater to leave them in this form here. The solutions so far obtained 
show that Yo is even (in Z), Yl odd, Y2 odd, Y3 even, Y4 even, and similar conclusions 
apply to all the Yn; Y5 turns out to be even. This confirms the symmetry property 
used in the previous paragraph. 

If we use the details given above, we find that the separating streamline becomes 

as s+O+, where [ =  gm(7) is the path of the point of largest amplitude (i.e. 
c m ( ~ )  = c(E[,,~)).f It is easily confirmed that there is no non-uniformity in this 
expansion as 5+Em, even though 2,(Cm,~) = 0. An interesting observation is that 
the separating streamline is seen to be asymmetric now that the higher-order terms 
have been included (a point also made by Moore & Saffman 1982). It turns out that 
the separating streamline, given here correct at  O(d) ,  is of sufficient accuracy to allow 
the complete determination of Y, (which we shall consider in more detail later). The 
solutions (29) and (30), for Y3 and Y4 respectively, match with the outer solutions 
to the extent that there are no contributions of O(E(1n E ) ~ )  or O(s In E )  to the arbitrary 
constant. However the solution for Y2, apart from the terms ensuring matching to 
the O(d) term (see Appendix), incorporates the additional term &i(2Em)i as 2+* m. 
In consequence, to match, the outer expansion must now read 

@ - @$ &B5(25,)i+e$~ as E+O+; (33) 

the additional term, being a function only of 7 ,  automatically satisfies the governing 
equations at O(d).  There is no O ( d )  contribution to the pressure. This extra term 
appearing in (33) is the correction necessary in the outer region in order to 
accommodate the distortion of the streamlines within the critical layer. An analogous 
correction term was also found by Moore & Saffman (1982); a more general O ( d )  
addition to the outer stream function (following Haberman 1972) will be mentioned 
in $5. 

t Note that 5, is well defined for a single-peaked initial profile which evolves into n solitons (plus 
oscillatory tail). The occurrence of twin (equal) peaks, however, requires minor modifications to 
permit an interpretation of (32). 
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Although we have chosen not to dwell upon the details of the derivation of (28)-(30) 
(but see later), we shall indicate the contribution thkse terms make to the total 
vorticity. Since the expansion (20) has been determined to O(s Ins), the contribution 
from Yz, Y8 and Y4 to the vorticity will be 

- (dYz + s(ln !& + s In s'y,),, 

= -d[ - F ~ Z ~ ( ~ ( Z z + ~ ~ ) : + s ~ l n ~ -  

and just dFEZ in 121 < 2,. In other words, the total vorticity is 

-F;-&F;z+o(B Ins), 

as c + O  (i.e. IEl+m), in the exterior regions (above and below the separating 
streamlines). The region interior then has a total vorticity (uniquely determined by 
using the continuity conditions on Z = f 2,) of - F;, to this order, no matter what 
the form of the surface wave. Thus the region which can support closed streamlines 
is one of constant vorticity (at least to o(s Ins)): this is consistent with the 
Prandtl-Batchelor theorem. The variation in vorticity required in the exterior region 
to maintain the passage of the wave is described explicitly in (34), and for consistency 
in our problem this must pertain at 7 = 0. 

We shall now examine more closely the derivation of the solution for Y5; the same 
methods have already been employed to find Yz, 'u, and Y4. The following discussion 
should therefore clarify the points omitted in our presentation of the solutions 
(28H30). 

The problem for Y5 and PI can be written as 

F; 
F; 

ZFL Kfz - Fb 'ysE - 2 Tzz + tZzF; Yzfz - ?jZz - qoE ] (35) 
-zF; 5,' yk yzfzz- 56 %=+ y2zT+p1, = '3 

with P l Z  = 0, 

where we have already made use of Yo = T / ~ / F ~  ; Y& 7 , Z )  is given in (28). The pressure 
Pl is then continuous and matches with (14) if 

?I = 111' + K+TOEf = 71; - K-?log, (36) 

and again see (17). The solution for Y5 valid in the exterior region of the critical layer 
can now be obtained from (35) by first substituting for Pl and Y,f : after some analysis 
we find that 
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where of, af and /3$ are arbitrary functions, and g = c([, 7) .  To determine wf it is 
necessary to consider the O(s) contribution to the vorticity; this takes the form 

Moreover, the terms in (38) must approach -!jZzK as E-++ co (where qo, [ + O ) ,  which 
requires that 

being the same both above and below the separating streamlines. The discussion of 
the exterior region is completed by matching (37), as 121 +. 00, to the O(E)  terms given 
in the Appendix. Although a lengthy business, this does confirm that (37) is, indeed, 
the correct form, with wf given by (39) ; furthermore, the absence of any term linear 
in 2, as 121 + 00, is possible only if 

where P ( $ , k )  is the incomplete elliptic integral of the first kind, with 
tan 4 = (25)4/Z0. Finally, the term /3f (7) is simply related to C: (7) : to match we must 
have 

The interior region of the critical layer is described by equations (35), with PI 
already determined as (36), and Yz expressed in the form valid for 121 < 2, (see (28)). 
The integration of (35) yields the general solution for Y: (defined in 121 < 2,) as 

where w',, a',(E,7) and pi6(7) are arbitrary functions. (Solution (42) is no more than 
solution (37) with certain terms in the particular integral omitted and the limits on 
the double integral specified.) The arbitrary functions are now chosen to ensure that 
Y (to this order) satisfies the continuity conditions on Z = Z,(f[, 7; E). The continuity 
of Y,  at this order, requires that Y5 be continuous on Z = &Zo;  the continuity of YZ 
requires the continuity of ( YSz + 2, !R2zz), where we have written 

Z, - &Zo+d InEZ1+BZZ, B + o + ,  

for simplicity: see (32). These two conditions yield 

Jozo Joz w: dZ dZ- Jog w:(X,  7 )  dX + A, (43) (2Cm)4 J z,dEfa$ zo+/3$ = 
00 F; 

E 

and (44) 
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respectively, with a: = 0 and (Bs+ = /3; (and we note that a: = -a; : see (40)). It 
is convenient at this stage to write the vorticity contribution, w:, as the sum of two 
parts, 

(~z2+C)+SZ5(g~+(5,7), (45) 

whence (43) and (44) yield 

The presentation of the complete solution of the critical layer, correct at  O(e) ,  
lacks only the solution of (47) for 52,. However, this h a 1  calculation is at least 
straightforward since (47) can be re-cast as Abel's integral equation (with degree f), 
although the actual form of the resulting solution is somewhat involved. It is worth 
observing that an Abel equation for the vorticity was also encountered by Varley 
t Blythe (1983) in their discussion of the critical layer; we shall return to this point 
later. Now, before we describe this solution in detail, it  is instructive to first determine 
SZ, in the case of steady flow. In the context of our problem this will correspond only 
to the solitary-wave solution for the surface profile. If C = (~(E-CT), so that the 
solitary wave has an amplitude proportional to C, then we obtain 

where E($,  k) is the incomplete elliptic integral of the second kind, and k = ([/C)i. This 
yields 

(48) 
Sz,dz= c-zo K JOZ0 F; 

and so 52,=CF:/Fh, a constant. Such a simple solution for steady flow might 
encourage us to expect, after all, a fairly elementary solution for 0, in general. 
However, this proves to be misleading: if we write (47) as 

then the solution can be derived using standard techniques. After some manipulation 
this solution is expressed as 
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where E and P are functions of q5 and k = (P/C)t ,  and alafdenotes the derivative with 
respect to the 7-dependence in P only; Q5,(7) is the limiting form of the right-hand 
side of (49)  as X+Cm or, equivalently, as [-+Em, 

where K is the complete elliptic integral of the first kind. It is now an elementary 
exercise to check that (50) recovers the steady-state solution (for which Q50 = 0), this 
calculation being aided by the fact that the integrals in (50) are over 5, and &/C6 = - C 
in the steady state. 

This completes the presentation of the detailed results than can be obtained from 
our analysis. In particular we have demonstrated that the vorticity can be completely 
determined; this requires a specification of the initial state in order to fix Yo but for 
higher-order terms continuity conditions alone are involved. This slightly surprising 
result is essentially a consequence of restricting the analysis to long waves for which 
the leading order (Yo) is sufficient to prescribe the dominant form of the separating 
streamline (across which continuity is applied). This important observation is made 
by Varley and Blythe (1983) in their study of the hydraulic equations (which are the 
ultimate long-wave equations). Since the form of the vorticity usually excites some 
interest for critical-layer flows, we shall conclude this section with a few observations. 
In  fact, it turns out that the behaviour of the vorticity inside the separating 
streamlines is not as straightforward as one might have hoped. 

The total vorticityt outside the separating streamlines can be written as 

where X = Z2 +2[, E+O+ and the signs are ordered above/below. This is the required 
form for the maintenance of the wave motion, and must pertain at 7 = 0 to be 
consistent with our theory. It is clear that, for [++ co, we recover the undisturbed 
vorticity distribution ahead of the wave 

-W - F;+dZFZ++Z2F[ as E+O+.  

On the other hand, the total vorticity inside the separating streamline is 

- w - F; + E [f (c - 3 3) X+ Q5], (53)  

as E + O + ,  where 52, is given in (50). The vorticity is no longer constant, even though 
(53)  is valid in the region which can support closed streamlines. However, this flow 
is not steady and so there is no conflict with the Prandtl-Batchelor theorem. If the 
flow were steady then 

t For convenience we shall give expressions for - w .  
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which is also not constant, but neither are there closed streamlines in this situation. 
Moreover we see that the vorticity is completely determined and not equal to - Fh 
as f++ co : in particular, for example, 

(55) 

for f++ 00 (since 5+0). It is easily confirmed that, in all regions, o is constant on 
particles i.e. Dw/Dt = 0. 

Finally, in order to determine the jump in vorticity across Z = Z,,  we require the 
behaviour of 52, as Z+fZo : but 52, is singular in this limit, at least for unsteady flow 
for which SZ,, =k 0. In  other words the asymptotic expansion for the vorticity is 
presumably not uniformly valid for ZE [ - Z,, Z,], in the case of unsteady flows. 

There are a number of avenues open to us which should lead to a more complete 
understanding of the nature of this singularity. The method we shall adopt is 
arguably the neatest and, in addition, it will furnish a direct comparison between our 
approach and that adopted by Varley & Blythe (1983). There should also be a fair 
measure of agreement between the results since our problem is essentially a 
perturbation of the hydraulic equations examined by Varley & Blythe. Furthermore, 
we can take the opportunity to check the form of the vorticity inside the separating 
streamlines. Consider the equation 

F" 1 
- w -  F ~ + E  [;( - F c - 3 -  " Z) Z 2 - & 5 & c d f ] ,  

$2 $2,- $, $zz + Q , ( 5 9  7 ;  4 = 0 ; (56) 

then $zz = -G($ ,T ) ,  where 4 is an arbitrary function, and if q is correct to O(E)  the 
total vorticity will be G + O ( E ) .  The choice 

roo 

ensures that we have the appropriate representation of 

as s+O+, valid inside the separating streamlines (see (6)), and the method of Varley 
& Blythe (1983) is applicable. 

Now if u = u$ on Z = Z$ (the separating streamlines) and if Z = 2, on Y = 0 (where 
u = 0) ,  then it can be shown that 

an integral equation for 4. Let us suppose that 

4 N - Fh + ESZ ; (58) 

then from (57), together with the continuity of particle velocities, we obtain 

After a suitable choice of integration variable, (59) agrees in every respect with (44) ; 
we then have W: = -a. This confirms the correctness of the vorticity distribution 
inside, but not close to, the separating streamlines. 

In  order to examine the behaviour of 6 near the boundaries Z = Z$ it is necessary 
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to allow the lower limit in (57) to approach the upper one i.e. C-+&,(T), at fixed E. 

An initial study seems to indicate that 

Thus the existence of a singularity in the vorticity is reinforced: for unsteady flow 
(G?50 += 0) the separating streamlines are vortex sheets of strength O(d). For steady 
flow = 0) there is only a discontinuity in vorticity across these streamlines. (The 
details underlying the above discussion can be found in Varley & Blythe (1983) ; it 
would appear that the integral equation (57) is worthy of further study.) 

5. Discussion: the formation of a cat's-eye 
This problem has demonstrated how the classical nonlinear critical layer can be 

extended to accommodate unsteady weakly nonlinear surface waves, corresponding 
to the analysis for Rossby waves as described by Redekopp (1977), and others. In 
particular we have seen that the vorticity is completely determined everywhere, 
without the need to invoke a viscous secularity condition, although the vorticity 
cannot be arbitrarily assigned initially. The restriction to long waves imposes a 
certain structure on the problem, as explained by Varley t Blythe (1983), which in 
turn fixes the vorticity inside the separating streamlines. Furthermore, we have 
shown that for unsteady motion the inclusion of a discontinuity in vorticity is not 
sufficient : it  has been found that a weak vortex sheet must exist at the separating 
boundary. For steady flow, however, a jump in vorticity is the only ingredient. The 
jump is given by the difference between (52) and (54) evaluated on Z = Z:, the 
dominant contribution being 

[w]  - T$G (2[,)f, as E + o + ,  

where [w]  is the jump from inside to outside. Note that this jump is the same strength 
as the vortex sheet. 

Let us now digress in order to see how the extension (for inviscid flows) suggested 
by Haberman (1972) can be incorporated here. We shall consider the O ( d )  jump in 
vorticity (as given above), and examine the conditions under which this discontinuity 
can be removed. The solution for Y2 can be written as 

r Z  r z  

and the vorticity is continuous on Z = +Zo if 

[+F:(z2 + 2y)'TF:(2Sm)', IZI 2 2 0 ,  

IZI < 2 0 ,  w2 = 10, 

(cf. solution (28)). The solution for Y2 is now as given in (28) with the additional term 

T!jF325m)4(ZTz0)2, IZI 2 zo, (61 1 
which must be matched to the outer solution. Following Haberman (1972) we express 
F = U - c in the outer regions as 

F = F0(Z)+dF:(2,7), F?(Zc,'T) = 0, 
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where Fo(z) is our previous F(z )  (see the definitions after (3)). Thus we are imposing 
an.O(d) distortion of the main stream; for unsteady flow this must depend on 7 ,  and 
so a term dF$  will appear in the governing equations. The outer expansion must now 
take the form 

and it then follows that @tsatisfies 

$ - $$ +"${ + S $ L  

It is easy to confirm the asymptotic behaviour 

$4 - A*([ ,7)+%*(7)  as z-+zc, 

where %'* is the term already introduced in (33), and 

F&(zc,7)3,.g+(F;)2Af = 0. 

The new terms available for matching to (61) are therefore 

$FhC Z2 + A' + %'* , 

and so F&, = TFg(2Cm)4, A* = T$F:(25,)iZ& %'* = kf(2Cm)i, 

with the a2 given in (31) replaced by a2+F32Cm)tZ0. These choices immediately 
satisfy equation (62). Thus, if a distortion of the mainstream is allowed, then it is 
indeed possible to remove the discontinuity in vorticity. It is to be expected that this 
principle can be extended to the removal of higher-order discontinuities, but it would 
seem that no such manoeuvre will avoid the existence of the vortex sheet which is 
present for unsteady flows. 

We now turn to one of the aims in this work, namely the description of the evolution 
of cats'-eyes. The surface wave was chosen to be a solution of the KdV equation, and 
in particular we can examine the simplest case for which a single-peaked initial profile 
develops into just two solitons. When the two peaks first appear (which occurs after 
a finite time) then the critical layer under the wave will develop a single cat's-eye. 
In general the n-soliton solution which evolves from a single-peaked profile will 
produce n- 1 unequal cats'-eyes, but the appearance of each one will (locally) follow 
the pattern we shall describe here. 

The evolutionary process is most clearly depicted by presenting the dominant form 
of the streamlines, 

Z2 + 2C = constant, 

where 5 = qo/FF and qo is a solution of the KdV equation (19). For the purposes of 
numerical computation we shall use suitably normalized variables such that 

30,  + 6303o.g + 70.g&.g = 0, 

where 7+a7, [+BE for appropriate constants a, 8. The 2-soliton solution can then be 
written as 

H = 3 = (1+A)2[(C++pc-) (c++c-/p)-(s+-8-)2] 
(c++pcJ2 

9 

where 

with X = + k , [ ,  T = f k i r ,  p = ( A + l ) / ( A - l ) ,  A = k , / k , ,  and k , ,k ,  are the free 
parameters associated with the two solitons. It is now easily verified that, at T = 0, 
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FIQURE 3. The surface wave and critical layer at T = 0. 
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FIQIJRE 4. The surface wave and critical layer at T = 0.3; the cat's-eye has just formed. 
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FIGIIRE 5. The surface wave and critical layer at T = 1 ; the two-soliton solution is for waves of 
amplitude 1 and 4 units. 

FIGURE 6. The separating streamlines (with the line of symmetry ---) at times T = 0,0.3,0.5,1. 
The surface wave is given for times T = 0,0.3,1, propagating in the direction +. 

H is a symmetric profile with twin peaks if 4 3  > h > 1 but with a single peak if 
h 2 4 3 ,  and the amplitudes of the two solitons are 1 and h2. We shall present plots 
of the normalized streamlines 

Z 2 + 2 H  = constant 

against X, at given T, together with the corresponding surface profile H ,  for h = 2. 
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FIQURE 7. A schematic representation of the formation of the cat’s-eye for times 7 < T,, 7 = 7,, 

7 > 7,. The point 6 = 6, is denoted by a. 

The sequence of figures 3, 4, 5 shows the development of the 2-soliton solution 
from an initial single-peaked profile at T = 0 to the well-defined 2-soliton structure 
at T = 1. The streamline pattern clearly demonstrates the evolution of the asymmetry 
as T increases and in particular at T = 0.3 the cat’s-eye has just appeared. The 
streamlines are numbered to indicate the constancy of stream function on the same 
streamline at different times. (At T = 0.3 additional streamlines are included to depict 
more completely the pattern at this time.) Since the separating streamline plays an 
important role in our theory, and it also evolves in time, this is presented separately 
in figure 6 (for times T = 0,0.3,0.5,1) together with the surface wave. Apart from 
showing how the cat’s-eye first appears (which we shall investigate shortly), the 
general picture requires no further comment except to observe that, aa T + 00, so the 
cat’s-eye elongates indefinitely. Eventually we shall have (locally) streamlines, 
similar to those shown in figure 4, in the neighbourhood of each peak (if our solution 
does persist for times greater than O(d)). 

Finally we can use our results to describe two facets of the evolution of the cat’s-eye. 
The first follows immediately from our discussion of the vorticity and is a fundamental 
result here : the vorticity inside the separating streamlines is completely determined 

12-2 
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irrespective of whether this region incorporates open or closed streamlines. Hence the 
presence of cats'-eyes does not imply an arbitrariness in the vorticity, even for 
inviscid flows. The second aspect relates to the birth of a cat's-eye using the equation 
for the streamlines, and the KdV equation for the surface wave, we can examine the 
behaviour near any point where qoE = qoEE = 0. Let this be at T = T,, 6 = 6,; then 
near to this point the streamlines take the form 

z2+ 45- 6J3-  (7- 7,) [b  + 45- 6,)l = k, 
approximately, where we have used the KdV equation to give qT and vET at this critical 
point; a, b, c are positive constants, and k is a constant to be chosen. If T < 7, then 
the streamlines cross Z = 0 just once, and for T = T, with k = 0 the streamline is a 
semi-cubic parabola. However, for T > T~ some streamlines cross 2 = 0 twice and for 
one special value of k the curve is a strophoid: this is the boundary of the cat's-eye. 
The sequence is sketched in figure 7, where the transition to a strophoid constitutes 
the birth process. Although other models, besides the KdV equation, are no doubt 
possible, the local behaviour with qoE = qoEE = 0 but qOEEE + 0 would seem a 
satisfactory requirement for the generation of a cat's-eye. It is, of course, outside the 
scope of this study to attempt any examination of the generic problem for the 
formation of cats'-eyes. 

The author is grateful to two referees who highlighted some shortcomings in an 
earlier draft of this paper. 

Appendix 
The expansion of $; + s$F for z = z, + d2, as E-+O+, is 
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*tFkI$}  (7$)2]+0(4. 

The notation used here is given in the paper: in particular see @2,3. 

REFERENCES 

BATCHELOR, G. K. 1956 J .  Fluid Mech. 1, 177-190. 
BENJAMIN, T. B. 1962 J .  Fluid Mech. 12, 97-116. 
BENNEY, D. J. & BEROERON, R. F. 1969 Stud. Appl. M a t h  48, 181-204. 
BENNEY, D. J. & M~SLOWE, S. A. 1975 Stud. Appl. Mdhs 54, 181-205. 
BROWN, S. N. & STEWARTSON, K. 1978 w h y s .  Astrophys. Fluid Dyn. 10, 1-24. 
BROWN, S. N. & STEWARTSON, K. 1979 Geophys. Aatrophys. Fluid Dyn. 14, 1-18. 
BURNS, J. C. 1953 Proc. C a d .  Phil. SOC. 49, 695-706. 
DAVIS, R. E. 1969 J.  Fluid Mech. 36, 337-346. 
FREEMAN, N. C. & JOHNSON, R. S. 1970 J .  Fluid Mech. 42, 401409. 
HABERMAN, R. 1972 Stud. Appl. Maths 51, 139-161. 
KELVIN, LORD 1880 Nature 23,4546. 
MARQOLIS, S. B. & Su, C. H. 1978 Phys. Fluids 21, 1247-1259. 
MASLOWE, S. A. & REDEKOPP, L. G. 1980 J .  Fluid Mech. 101, 321-348. 
MOORE, D. W. & SAFFMAN, P. G. 1982 Proc. R. Soc. Land. A 382,389410. 
REDEKOPP, L. G. 1977 J .  Fluid Mech. 82, 725-745. 
REID, W. H. 1965 The Stability of Parallel Flowa. Basie Developments in  Fluid Dynamics, vol. 1, 

STEWARTSON, K. 1978 Qe5phy.s. Astrophya. Fluid Dyn. 9, 185-200. 
VARLEY, E. & BLYTHE, P. A. 1983 Stud. Appl. M a t h  68, 103-188. 
VELTHUIZEN, H. G.  M. & VAN WIJNQAARDEN, L. 1969 J .  n u i d  Mech. 39,817-829. 

pp. 249-308. Academic. 


